

Date: 15-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Fill in the blanks	
a)	The F-test is used to compare the ----- of two or more samples.	
b)	The time required to elute the non-retained solutes is known as ----- .	
c)	The principle involved in the electrogravimetry method is -----.	
d)	----- is used as an indicator in titrating a strong acid with a weak base.	
e)	----- spectroscopy is useful for the determination of alkali and alkaline earth metals.	

SECTION A – K2 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
2	Answer the following	
a)	Differentiate analytical and statistical sample.	
b)	Define retention factor.	
c)	What is the principle of thermometric titration?	
d)	Define the autoprotolysis constant.	
e)	Name any two applications of fluorimetry.	

SECTION B – K3 (CO2)

SECTION C – K4 (CO3)

Answer any TWO of the following		(2 x 12.5 = 25)
8	(i) Five replicate determinations of Na_2CO_3 in the standard gave the following results (%): 98.71, 98.59, 98.62, 98.44, 98.58. Test whether the sample values deviate from the mean of 98.76%. ($t = 2.78$). (ii) Describe the principle of flame emission spectrometry.	(7.5+5)
9	(i) Discuss the principle, advantages, and applications of mass spectrometry as a detector in gas chromatography. (ii) A chromatogram shows a peak with a retention time of 8.4 minutes and a baseline width of 0.7 minutes on a 3.0 m column. Calculate the number of theoretical plates and plate height.	(8.5+4)
1	(i) What are the factors influencing the thermograms?	
0	(ii) Sketch and explain the TGA of calcium oxalate monohydrate.	(7.5+5)
1	(i) Highlight the applications of non-aqueous solvents.	
1	(ii) What are the principles of nephelometry and turbidimetry?	(7.5+5)

SECTION D – K5 (CO4)

Answer any ONE of the following		(1 x 15 = 15)
1	(i) Illustrate the different types of sampling with suitable examples.	
2	(ii) Discuss the working principle of a reciprocating pump used in HPLC. How does it maintain a constant flow rate? (iii) Give a detailed account of DTA technique and its applications.	(5+5+5)
1	(i) Discuss in detail the principle and titration curve of weak dibasic acid vs strong base.	
3	(ii) Write the factors that influence fluorescence emission.	(10+5)

SECTION E – K6 (CO5)

Answer any ONE of the following		(1 x 20 = 20)
1	(i) Calculate (a) average deviation (b) 90% confidence limit of the following data: 7.146, 7.098, 6.942, 7.256 and 6.593. ($t = 2.78$)	
4	(ii) Compare packed and capillary columns in GC. (iii) How is the equivalence point detected in glacial acetic acid titration?	(10+5+5)
1	(i) Explain in detail the estimation of copper by electrogravimetric method.	
5	(ii) Discuss in detail the principle, instrumentation and applications of spectrophotometric titration.	(10+10)
